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Abstract. Theoretically there are two approaches to predict single spin azimuthal asymmetries. One
is to take transverse momenta of the partons into account by using transverse momentum dependent
parton distributions, while another is to take asymmetries as twist-3 effects. The non-perturbative effects
in these approaches are parameterized with different matrix elements, and predictions can be different.
Recently, gauge invariant definitions of transverse momentum dependent parton distributions were
derived. With these definitions it can be shown that there are relations between non-perturbative matrix
elements in these two approaches. These relations may enable us to unify two approaches and to have
unique predictions for single spin azimuthal asymmetries. In this letter we derive these relations by using
time-reversal symmetry and show that even with these relations the single spin azimuthal asymmetry in
a Drell–Yan process is predicted differently in different approaches.

Single spin azimuthal asymmetry provides a new tool for
the study of the structure of hadrons because the asymme-
try is sensitive to correlations between quarks and gluons
as partons inside a hadron and to orbital angular momenta
of these partons. Experimentally, such an asymmetry was
observed for inclusive production of pions in polarized
proton–antiproton scattering with center-of-mass energy√
s = 20 GeV by the E704 collaboration [1]. The asym-

metry is large for a charged pion, while for π0 production
it is consistent with zero when the transverse momentum
kT is smaller than 3 GeV, and it tends to a positive value
when kT becomes large. In semi-inclusive deep-inelastic
scattering (SIDIS) significant asymmetries were also ob-
served in the production of pions and kaons by HERMES
[2]. Asymmetries in polarized proton scattering are cur-
rently studied by STAR at RHIC. Large spin effects are
observed in the preliminary results after a first run. SIDIS
measurements of asymmetries with a transversely polar-
ized target were reported by the SMC collaboration [3].
Experiments with a transversely polarized target are now
being performed by HERMES and COMPASS [4,5].

Single spin azimuthal asymmetry is a T -odd effect and
helicity-flip amplitudes are involved. Perturbatively T -odd
effects can be generated at loop level in hard scattering of
active partons of the hadrons. Because the quark–gluon
coupling of QCD conserves helicities in the massless limit,
the T -odd effects are proportional to quark masses which
can be neglected. Therefore the observed T -odd effects
cannot be explained by those T -odd effects arising from
hard scattering and are related to the non-perturbative
nature of the hadrons. Indeed, these T -odd effects can be
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generated from final or initial interactions between active
partons involved in the hard scattering and remnant par-
tons in hadrons [15,23,24]. The effect of these interactions
can be represented by gauge links in the definitions of the
parton distributions [23,24]. Theoretically there are two
approaches to explain single spin azimuthal asymmetry by
taking non-perturbative nature of hadrons into account.
One is to take the transverse momenta kT of the partons
in a hadron into account where one uses transverse mo-
mentum dependent parton distributions to parameterize
non-perturbative effects. For a polarized hadron as an ini-
tial state the effect is parameterized by a Sivers function
[6], while for a hadron observed in a final state the T -odd
effect related to this hadron is parameterized by a Collins
function [7]. For semi-inclusive deep-inelastic scattering,
both functions can make contributions to the observed
single spin azimuthal asymmetry. Single spin azimuthal
asymmetry has been studied in terms of these functions
[8–13]. These functions have been also studied with models
[14–17]. Another approach, called the Qiu–Sterman mech-
anism, is that the T -odd effect is produced by taking twist-
3 effect into account, it being proportional to quark–gluon
correlations inside a hadron [18]. The fact that T -odd ef-
fects can be generated at twist-3 level was also pointed out
in [19]. This approach was used to make predictions for
various processes in [18,20]. It is interesting to note that
at first sight the physical reason for the effect is different
in different approaches. In the first approach the helicity
of a initial hadron is changed because of orbital angular
momenta of the partons. This can be seen clearly in terms
of light-cone wave functions [21]. In the second approach
the helicity flip is caused by the non-zero spin of the gluon
which is correlated with other partons. Predictions based
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on different approaches are different. A question arises as
to why there are two physical origins for one effect.

This question has been answered partly by recent stud-
ies of transverse momentum dependent parton distribu-
tions [22–24], which are involved in the first approach. It
has been shown that gauge links in these distributions
play an important role to incorporate T -odd effects intro-
duced by final state interactions. In particular, additional
gauge links should be included in the definitions of these
distributions [24]. With these gauge links it is possible to
relate the second kT moment of the Sivers function to the
twist-3 matrix element in the second approach [25]. With
relations between the non-perturbative matrix elements
in the different approaches it may be possible to unify
the two approaches and to have unique predictions for the
single spin azimuthal asymmetries. In this letter we will
show that predictions based on the two approaches are
still different, although such relations exist. We will show
this in detail with the Drell–Yan process. Before showing
this we give another derivation of the relations between
the second kT moments of T -odd distributions and twist-
3 matrix elements by using the time-reversal symmetry of
QCD.

We consider a proton moving in the z-direction with
the momentum P and the transverse spin sT. We use a
light-cone coordinate system and introduce two light-cone
vectors: nµ = (0, 1, 0, 0), lµ = (1, 0, 0, 0) and n · l = 1.
Neglecting the proton mass we have Pµ = (P+, 0, 0, 0).
Taking transverse momenta of partons in the quark–quark
correlation in a proton into account, there are two T -odd
parton distribution functions appearing in a Drell–Yan
process which take the effects of the initial state inter-
action into account. They can be defined as [26]

f⊥
1T,DY(x, k2

T)ε⊥µνk
µ
Ts

ν
T

=
1
4

∫
dξ−d2ξT

(2π)3
e−ik·ξ {〈P, sT|ψ̄(ξ)γ+V (ξ)ψ(0)|P, sT〉

− (sT → −sT)} ,
h⊥

1,DY(x, k2
T)ki

T

= −
∫

dξ−d2ξT
(2π)3

e−ik·ξ · 〈P |ψ̄(ξ)σ+iV (ξ)ψ(0)|P 〉, (1)

with ξµ = (0, ξ−, ξT) and ε⊥µν = ερσµνn
ρlσ. The momen-

tum k is kµ = (xP+, 0,kT). The matrix element in the
last line is spin averaged. The function f⊥

1T,DY(x, k2
T) is the

Sivers function for Drell–Yan processes. V (ξ) is a product
of gauge links to make the matrix element gauge invari-
ant; it takes the effect of the initial state interaction in
the Drell–Yan process into account. If one can take V (ξ)
as a unit matrix, then one can show with time-reversal
symmetry that both correlation functions are zero. It is
important to note that V (ξ) is not a unit matrix; even
in the light-cone gauge n · G = 0, additional gauge links
must be introduced to make the definitions gauge invari-
ant [24]. We will take the light-cone gauge. In this gauge
V (ξ) reads

V (ξ) = V−∞(ξT)

= P exp

(
ig
∫ ξT

0
dξT · GT(0, ξ− = −∞, ξT)

)
. (2)

This gauge link takes the effects of the initial state inter-
action into account and it can be derived in a similar way
as in SIDIS [24]. The difference is that the gauge link is
at ξ− = −∞ because it is for the initial state interaction.

Under parity- and time-reversal transformation, we ob-
tain for the matrix element

〈P, sT|ψ̄(ξ)γ+V−∞(ξT)ψ(0)|P, sT〉
= 〈P,−sT|ψ̄(ξ)γ+V∞(ξT)ψ(0)|P,−sT〉, (3)

with

V∞(ξT) = P exp

(
ig
∫ ξT

0
dξT · GT(0, ξ− = ∞, ξT)

)
. (4)

Similarly one can define the two T -odd parton distribution
functions appearing in deep-inelastic processes which take
the effects of the final state interaction into account. The
two functions f⊥

1T,DIS(x, k2
T) and h⊥

1,DIS(x, k2
T) are defined

similarly as in (1), but with the gauge link V (ξ) replaced
with V∞(ξT). These two functions are related to those in
Drell–Yan processes with time-reversal symmetry. With
(3) we can write

f⊥
1T,DY(x, k2

T)ε⊥µνk
µ
Ts

ν
T =

1
8

∫
dξ−d2ξT

(2π)3
e−ik·ξ

× {〈P, sT|ψ̄(ξ)γ+ [V−∞(ξT) − V∞(ξT)]ψ(0)|P, sT〉
− (sT → −sT)} ,

h⊥
1,DY(x, k2

T)ki
T = −1

2

∫
dξ−d2ξT

(2π)3
e−ik·ξ

× 〈P |ψ̄(ξ)σ+i [V−∞(ξT) − V∞(ξT)]ψ(0)|P 〉. (5)

It is expected that the functions f⊥
1T,DY and h⊥

1,DY de-
crease rapidly with increasing kT. Then T -odd effects re-
lated to them can be estimated at leading order by the
second moment of kT of the left hand side in (5):

Kα
f (x) =

∫
d2kTk

α
Tf

⊥
1T,DY(x, k2

T)ε⊥µνk
µ
Ts

ν
T

= −1
2
εασsTσ

∫
d2kT|kT|2f⊥

1T,DY(x, k2
T),

Kµν
h (x) =

∫
d2kTk

µ
Th

⊥
1,DY(x, k2

T)kν
T (6)

=
1
2
(nµlν+nν lµ−gµν)

∫
d2kT|kT|2h⊥

1,DY(x, k2
T).

With (5) these moments can be expressed in terms of ma-
trix elements. Taking Kα

f as an example, we have

Kα
f (x) = −1

8

∫
dξ−

(2π)
e−ixP+ξ− × i

∂

∂ξTα

× {〈P, sT|ψ̄(ξ)γ+ [V−∞(ξT) − V∞(ξT)]ψ(0)|P, sT〉
−(sT → −sT)} |ξT=0. (7)
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Taking the derivatives we have

Kα
f (x) =

1
8

∫
dξ−

(2π)
e−ixP+ξ−

× {
g〈P, sT|ψ̄(ξ−n)γ+

× [Gα
T(0,∞, 0, 0) −Gα

T(0,−∞, 0, 0)]ψ(0)|P, sT〉
−(sT → −sT)} . (8)

Now one can show that Kα is related to the twist-3
quark gluon correlation TF (x, x) introduced in [18]. The
correlation function is defined as

TF (x1, x2)εµνσρnν lσsTρ

= −g

2

∫
dy1dy2

4π
e−iy2(x2−x1)P+−iy1x1P+

×{〈P, sT|ψ̄(y1n)γ+G+µ(y2n)ψ(0)|P, sT〉
−(sT → −sT)} , (9)

where we include the coupling constant g into the defini-
tion. It is straightforward to obtain

TF (x, x) =
∫

d2kT|kT|2f⊥
1T,DY(x, k2

T). (10)

Similarly we have

TH(x, x) =
∫

d2kT|kT|2h⊥
1,DY(x, k2

T), (11)

where TH is defined with a twist-3 operator:

TH(x1, x2) = g

∫
dy1dy2

4π
e−iy2(x2−x1)P+−iy1x1P+

× 〈P |ψ̄(y1n)σ+µG+
µ(y2n)ψ(0)|P 〉. (12)

The relations in (10) and (11) clearly show that the effect
of the orbital angular momenta of the quarks is closely
related to that of the quark–gluon correlations because
of gauge invariance. These relations also show that the
non-perturbative effects in the two approaches for the sin-
gle spin azimuthal asymmetries are the same. However,
it should be noted that perturbative coefficients in these
two approaches are calculated in different ways. In the
first approach one uses kT factorization, while a collinear
expansion is used in the second approach. If the pertur-
bative coefficients in the two approaches are related in a
consistent way so that the predicted single spin azimuthal
asymmetries are the same, then we may have a unique
prediction for single spin azimuthal asymmetries and the
question asked before is fully answered. It is difficult to
establish a general relation between the perturbative co-
efficients, since they are differently calculated in differ-
ent ways and are different in different processes. But we
can show that the single spin azimuthal asymmetry in the
Drell–Yan process is differently predicted by the two ap-
proaches.

Now we calculate the single spin asymmetry in the
Drell–Yan process:

A(PA, sT) +B(PB) → l−(P1) + l+(P2) +X, (13)

where the proton A is transversely polarized with the
spin vector sT and moves in the +z-direction. The x-
direction is chosen as the direction of sT. We have S =
(PA+PB)2. The hadron B is unpolarized and moves in the
−z-direction. We will calculate the single spin azimuthal
asymmetry at leading orders, where the lepton pair has
a small transverse momentum. We assume that the solid
angle Ω(θ, φ) of the produced lepton in the center-of-mass
frame of the produced lepton pair and the invariant mass
Q2 of the lepton pair is observed. The single spin asym-
metry is defined as

AN =
(

dσ(ST)
dQ2dΩ

− dσ(−ST)
dQ2dΩ

)/(dσ(ST)
dQ2dΩ

+
dσ(−ST)
dQ2dΩ

)
.

(14)

The asymmetry is calculated in [27] with the Qiu–Sterman
mechanism. The result reads

AN = − 1
Q

· sin 2θ sinφ
1 + cos2 θ

×
(∑

q e2
q

∫
dxAdxBδ(Q2 − xAxBS)TF,q/A(xA, xA)fq̄/B(xB)∑

q e2
q

∫
dxAdxBfq/A(xA)fq̄/B(xB)

+ · · · ) , (15)

where TF,q/P (x, x) is defined in (9). The subscript q/A
denotes the distribution of q in hadron A. It should be
noted that the summation

∑
q, also below, is over all quark

and antiquark flavors, i.e., q can be an antiquark in the
summation. We only keep the term with TF,q/A. The dots
represent another term proportional to TH,q̄/B which is
irrelevant in this letter.

In order to make a comparison of the two approaches
we study the single spin asymmetries with kT dependent
distributions. At tree level the partonic process is just
qq̄ → l+l−. The cross section can be written

σ = e2
1

2S

∫
d3P1

(2π)32P 0
1

d3P2

(2π)32P 0
2
LµνW

µν · 1
Q4 , (16)

where the leptonic tensor Lµν and the hadronic tensor
Wµν are given by

Lµν = 4(Pµ
1 P

ν
2 + P ν

1 P
µ
2 − P1 · P2g

µν),

Wµν =
∑

q

e2q

∫
d4kA

(2π)4
d4kB

(2π)4

× (2π)4δ4(Q− kA − kB)

×
∫

d4ξ1d4ξ2eikA·ξ1+ikB ·ξ2 · (γν)jk · (γµ)li

× [〈PA, sT|q̄j(0)qi(ξ1)|PA, sT〉〈PB |qk(0)q̄l(ξ2)|PB〉
+ · · · ] , (17)

where · · · denotes power-suppressed terms. The quark q
and q̄ carries the momentum

kA = xAPA + kAT,

kB = xBPB + kBT, (18)
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respectively. The quark density matrix with kT depen-
dence

Φij(x, kT;P, S)

=
1
2

∫
dξ−d2ξT

(2π)3
eik·ξ〈P, S|ψ̄j(0)ψi(ξ)|P, S〉|ξ+=0 (19)

can be parameterized as [26]

Φ(x, kT;P, S)

=
1
4
{
f1l/+ f⊥

1T,DYεµνρσγ
µlνkρ

Ts
σ
T + g1sγ5l/

+ h1Tiσµνγ5l
µsν

T + h⊥
1siσµνγ5l

µkν
T + h⊥

1,DYσµνk
µ
Tl

ν
}
,

(20)

where the Sivers function is f⊥
1T,DY. The functions f⊥

1T,DY

and h⊥
1,DY are defined in (1). We changed the notation of

[26] slightly by replacing 1/M with 1. With this parame-
terization we have

Wµν =
1
3

∑
q

e2q

∫
dk+

Ad2kATdk−
Bd2kBT

× (2π)4δ4(Q− kA − kB)(kAT × sT) · ẑ
× f⊥

1T,q/A(kA)f1,q̄/B(kB)[gµν − lνnµ − lµnν ] + · · · ,
(21)

where we keep only terms with f⊥
1T,DY. ẑ denotes the di-

rection of the z-axis. It should be noted that the total
momentum Q of the lepton pair has non-zero transverse
components in general. It depends on the transverse mo-
menta of incoming partons. It is now straightforward to
calculate the asymmetry defined in (14). Since the asym-
metry is defined as a distribution of variables in the center-
of-mass frame of the lepton pair, we need to specify the
frame. We assume that the center-of-mass frame is ob-
tained from the laboratory frame by a Lorentz boost only.
This is conveniently used in experiment. In the center-of-
mass frame the lepton l+ and l− has the momentum k2
and k1 respectively. The momentum k1 and k2 read

kµ
1 =

√
Q2

2
(1, sin θ sinφ, sin θ cosφ, cosφ),

kµ
2 =

√
Q2

2
(1,− sin θ sinφ,− sin θ cosφ,− cosφ). (22)

The momentum Pi (i = 1, 2) in the laboratory frame is
related to ki (i = 1, 2) by the boost

P 0
i =

Q0√
Q2

(
k0

i +
Q · ki

Q0

)
,

Pi = ki +
k0

i√
Q2

Q +

(
Q0√
Q2

− 1

)
Q · ki

Q · QQ. (23)

The phase space integration is invariant under the boost.
Using (23) one can express Lµν in terms of k1, k2 and
Q. For transverse momentum independent parton distri-
butions one expects in general that they decrease rapidly

with increasing transverse momenta. Hence an expansion
of the perturbative part in transverse momenta is a good
approximation. Keeping the first non-zero order in the ex-
pansion of kAT and kBT, we obtain the asymmetry

AN =
1
Q

· sin 2θ sinφ
1 + cos2 θ

×
∑

q

e2q

∫
dxAdxBδ(Q2 − xAxBS)

xB − xA

2(
√
xA +

√
xB)2

×fq̄/B(xB) ·
∫

d2kT|kT|2f⊥
1T,DY,q/A(xA, k

2
T)

/
∑

q

e2q

∫
dxAdxBfq/A(xA)fq̄/B(xB) + · · ·

= − 1
Q

· sin 2θ sinφ
1 + cos2 θ

×
∑

q

e2q

∫
dxAdxBδ(Q2 − xAxBS)

xA − xB

2(
√
xA +

√
xB)2

× fq̄/B(xB) · TF,q/P (xA, xA)

/
∑

q

e2q

∫
dxAdxBfq/A(xA)fq̄/B(xB) + · · · (24)

In the above equation we have assumed that the initial
hadrons are in a center-of-mass frame, i.e., P 0

A = P 0
B . In

the last step we have used the relation in (10). Again, the
summation

∑
q is over all quark and antiquark flavors. It

is clear that the asymmetry here is different from that in
(15) because of the factor (xA − xB)/2(

√
xA +

√
xB)2. If

the factor was 1, then the asymmetry would be the same.
Hence, the asymmetries obtained by the two approaches
will have the same angular distribution but the normal-
ization is different. Since the factor can be positive or neg-
ative, the asymmetries from the two approaches can even
have different signs.

It should be noted that the hadronic tensor calculated
with the parameterization in (20) is not invariant under
electromagnetic gauge transformation. This can be seen
by evaluating QµW

µν with Wµν given in (21). The reason
is that the partons involved in the hard scattering have
non-zero transverse momenta and γ · l = γ− is contracted
with the hard part of qq̄ → l+l− according to the first
two terms in (20). With non-zero transverse momenta the
contraction with γ− does not make the qq̄ pair on-shell.
Hence the Uem(1) gauge invariance is not preserved. It
is also pointed out [28] that the decomposition in (20)
may need to be reexamined because the density matrix
element also depends on the vector nµ due to gauge links.
This dependence is neglected in (20). There are possibly
many ways to restore the gauge invariance. In this letter
we simply make the initial parton on-shell by replacing γ−
with γ · k/n · k for the first two terms in (20), i.e.,

Φ(x, kT;P, sT)

=
1
4

{
f1(x, k2

T)
γ · k
k · n + f⊥

1T,DY(x, k2
T)
γ · k
k · nε⊥ρσk

ρ
Ts

σ
T

+ · · ·
}
. (25)
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The hadronic tensor obtained with (25) is Uem(1) gauge
invariant. It is

Wµν =
1
3

∑
q

e2q

∫
dk+

Ad2kATdk−
Bd2kBT

× (2π)4δ4(Q− kA − kB)(kAT × sT) · ẑ
× 1

(kA · n)(kB · l)
× [

gµνkA · kB−kµ
Ak

ν
B−kν

Ak
µ
B

]
f⊥
1T,DY,q/A(kA)f1,q̄/B(kB).

(26)

It is straightforward to show that QµW
µν ∼ k2

Ak
ν
B +

k2
Bk

ν
A ∼ k2

T. Hence the gauge invariance is preserved up to
order k2

T. The asymmetry calculated with this tensor will
be gauge invariant. The result of AN can be obtained from
(24) by replacing the factor (xB − xA)/2(

√
xA +

√
xB)2

with
√
xB/(

√
xA +

√
xB). Therefore, even after we make

the hadronic tensor gauge invariant, the obtained asym-
metry AN is still different from that in (15) from the sec-
ond approach. It is interesting to see how the same asym-
metry in (15) can be obtained by starting from (26). If
we replace the tensor [gµνkA · kB − kµ

Ak
ν
B − kν

Ak
µ
B ] with

[gµνkA · k′
B − kµ

Ak
′ν
B − kν

Ak
′µ
B ], where k′µ

B = (0, k−
B ,−kAT),

and we neglect the dependence of the lepton momenta
on the transverse momenta of the incoming partons, we
indeed obtain the asymmetry in (15) with the same nor-
malization, but with an extra negative sign. However, the
transverse momentum of the lepton pair cannot be ne-
glected and we cannot do the replacement.

To summarize: There are two different approaches for
single spin azimuthal asymmetries. Using time-reversal
symmetry, we give in this letter a detailed derivation of
the relations between kT dependent T -odd distributions
and twist-3 quark–gluon correlators, which are used in
different approaches, respectively. These relations show
that the physical origin in the two different approaches
for single spin azimuthal asymmetries is the same because
of the gauge invariance. With these relations it may be
expected that one can unify these two approaches and
is able to deliver a unique prediction for single spin az-
imuthal asymmetries. We have studied in detail the single
spin azimuthal asymmetry in the Drell–Yan process with
the Sivers function and found that predictions from differ-
ent approaches are different even with these relations. The
kT factorization used for single spin azimuthal asymme-
tries does not respect the Uem(1) gauge invariance. This
problem may be solved by changing the projection of the
perturbative part slightly. But even after this change the
predicted asymmetry is still different. Our study shows
clearly that different approaches give different predictions
for the same physical effect in the Drell–Yan process and
one can expect that the same situation will also appear
in other processes. Therefore, at present we have not a
unique prediction for single spin azimuthal asymmetries,
in the Drell–Yan process at least, and this problem needs
to be studied further.
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